Music Bike

Nick Baroody Ethan Diep

ABSTRACT

Music Bike is an innovative project that transforms the cycling
experience by integrating real time adaptive music with a rider’s
actions. Using sensors mounted on a bicycle, such as an IMU and
Hall Effect sensor, the system collects data on speed, tilt, and G-
force, which is transmitted using Bluetooth Low Energy to an
Android application. Additional threshold algorithms were used to
detect different tricks, like a wheelie, jump, and 180. The core
objective was to create an intuitive connection between cycling and
music, allowing riders to feel as though they are conducting the
music with their movements. The mobile application utilizes the
FMOD audio engine to dynamically alter the music’s tempo,
layers, and effects based on the sensor data, creating a unique
listening experience for the rider. The system achieves a low-
latency feedback loop and seamless sensor integration, ensuring
that the music adapts in real time without disrupting the cycling
experience. By providing an immersive, adaptive soundtrack that
responds to the rider’s physical motions, Music Bike reimagines
cycling as a performance, turning each ride into a personal, musical
journey.

Keywords

Adaptive audio, real-time music, Bluetooth Low Energy (BLE),
sensor integration, ESP32, FMOD Studio, Android application,
cycling, interactive music system, dynamic audio, embedded
system.

1. INTRODUCTION

Music Bike is an innovative project that transforms the cycling
experience by integrating real-time adaptive music with a rider’s
actions and tricks on the bike. Using sensors, such as an IMU and
Hall Effect sensor mounted on the bike, the system collects data
related to speed, tilt, and G-force, which is transmitted to a mobile
application via Bluetooth Low Energy (BLE). The mobile app uses
this sensor data to adjust the rider’s music in real time, creating an
interactive and dynamic experience for the rider. The Music Bike
is designed to make the act of cycling feel like conducting an
orchestra, where each motion influences the musical composition,
enhancing the rider’s engagement with both the physical and
auditory elements of the activity.

Bennett Lahn Matthew Pham

Figure 1: The Music Bike

Cycling is a popular recreational and fitness activity, but its
experience is often static, with little variation beyond the rider’s
surroundings. Music Bike addresses this by adding a layer of
musical dynamism, transforming cycling into an immersive multi-
sensory experience. Drawing inspiration from similar systems like
the Mercedes-AMG MBUX SOUND DRIVE, which adapts music
to a driver’s behavior, and the Sonic Bike, which uses GPS to
trigger music based on location, the Music Bike adapts the music
based on the cyclist’s performance and movements. Such as
performing tricks or changing riding intensity. This project aims to
achieve a low-latency real time connection between sensor data and
audio feedback, ensuring that the music feels seamlessly
responsive.

This report will describe the design and development of the Music
Bike, detailing the hardware setup, sensor integration, mobile app
functionality, adaptive audio logic using FMOD Studio, and
performance metrics. It will also cover challenges faced during
implementation and the solutions developed to ensure a smooth and
engaging cycling experience. Finally, we will discuss the potential



future applications of this technology and opportunities for
expanding its capabilities, as well as possible industry standards our
design would be held to if it was made into a commercial product.

2. RELATED WORK

2.1 Mercedes-AMG MBUX SOUND DRIVE
We took some inspiration from Mercedes-AMG’s MBUX SOUND
DRIVE which is a feature in some Mercedes-AMG vehicles that
allows the music in the car to respond to one’s individual driving
style. “MBUX SOUND DRIVE connects the vehicle’s hardware
with the music software using precise in-car signals. The system
uses sensors to interpret driving dynamics such as acceleration,
steering, braking and recuperation and transforms them into
musical expressions” [1]. This allows drivers to treat their vehicle
as an instrument and compose music in real time.

Our Music Bike takes inspiration from this project, as our goal was
to make riding a bike feel like composing an orchestra. The most
obvious difference between our Music Bike and the MBUX
SOUND DRIVE is that ours is implemented on a bike, rather than
a car. But this is an important distinction because the MBUX
SOUND DRIVE uses more basic sensor inputs, such as
acceleration and steering, while the Music Bike was programmed
and trained to detect tricks, such as wheelies, jumps, and 180s on
the bike. Another key difference is that the MBUX SOUND
DRIVE adapts the driver’s own music, while the Music Bike has
preset tracks that respond to various sensor inputs.

2.2 Sonic Bike

Another similar product to ours is the Sonic Bike, “which was
invented by Kaffe Matthews and has evolved over 16 years of
international projects, and continues to be researched and
developed to expand the compositional potentials and unique
listening experiences it creates” [2]. The Sonic Bike plays sound
and music that changes depending on where the cyclist goes and
how fast they ride. It is a bicycle with speakers on the front and a
GPS tracking audio system on the back. The Sonic Bike performs
from a Raspberry Pi3 with a GPS receiver attached. The system is
powered by a USB charged power pack and everything is stored in
a box secured on the back of the bike frame. The Sonic Bike uses
two types of software, the mapping software which enables the
drawing of zones of sound on streets, paths, parks, anywhere
creating a sound map score. The other software is the system
software which runs on he Raspberry Pi2 and enables the bike to
locate itself on this sound map and it triggers specific music
fragments to play in certain ways at particular locations.

Our Music Bike is similar to the Sonic Bike as they both transform
cycling into a dynamic musical experience. The key difference is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission.

CSE 475 — Final Report

that the Music Bike uses various sensors, such as an IMU and hall
effect sensors to detect tricks on the bike and then have the music
respond to those sensor inputs. On the other hand, the Sonic Bike
uses a GPS system to adapt the music based on where the cyclist is
on a certain sound map. Additionally, the Sonic Bike’s kit with the
microcontroller and GPS is placed in a box behind the seat, while
our implementation is placed on the shaft below the seat. This
difference makes sense, as our implementation needs to be placed
here to more accurately detect the tricks that the cyclist performs.

3. TECHINAL DETAILS

3.1 Overview

The Music Bike system transforms cycling into an interactive,
dynamic musical experience by integrating real time sensor data
with adaptive audio. The system is composed of the hardware, a
mobile application, and an audio engine that all work together to
create a seamless experience.

The device is composed of a custom PCB board with connections
to integrate a microcontroller, an IMU, and Hall Effect sensors. The
sensors collect data and send it to our app via BLE. The data is
interpreted and if a bike trick, such as a wheelie, jump, or 180, is
detected, then the FMOD audio engine, which contains multiple
audio banks that the rider can choose from and each bank varies in
how it adjusts the music using a set parameter and the rider can hear
this change in music in real time.

3.2 Theory of Operation
The architecture consists of three main components: the hardware,
the mobile application, and the FMOD audio engine.

Hardware: The hardware consists of an ESP32-S3
microcontroller, which is responsible for reading sensor data from
multiple sources, such as an MPU9250 IMU and a KY-003 Hall
Effect sensor. The sensor data is transmitted to the mobile app via
BLE. The ESP32-S3 is also powered by a lithium battery.

Mobile Application: The mobile app, developed for Android,
connects to the hardware via BLE, receives sensor data, and
processes it for music playback. The app communicates with the
FMOD Studio engine to adapt the music based on sensor inputs.
The user interface allows the rider to pick their track based on
different FMOD Studio banks and view the sensor data.

FMOD Audio Engine: FMOD Studio is used for the adaptive
audio system, which responds to changes in the sensor data. FMOD
processes the incoming data to modify various aspects of the music,
such as pitch, layering of instruments, and changing the song based
on the rider’s performance.

3.3 Implementation Details
3.3.1 Hardware

Most of our hardware is implemented in a small, compact sensor
pack that is mounted just below the bicycle seat.



N
Angle:2.0 Jump:0.98
Land:2.99 Drop:3.77
Spd:0.0 Dir:F

Figure 4: Back of Sensor Pack

Figure 4 shows the back of our sensor pack, which contains our
ESP32-S3 microcontroller. When mounted on the bike, the back
is covered by a piece of foam and the lithium-ion battery is placed
Figure 2 shows the top of our sensor pack and it contains the in the void between the microcontroller and the PCB.

display, accelerometer zero button, power switch, MPU9250 IMU,
LED for confirming Bluetooth connection, and potentiometers for
adjusting the jump/drop sensitivity.

Figure 2: Front of Sensor Pack

Figure 3: Side of Sensor Pack

Figure 3 shows the side of our sensor pack, which contains the
power delivery board used to regulate the voltage of our attached
lithium-ion battery.

Figure 5: Sensor Pack Mounted on Bike

Figure 5 shows the sensor pack mounted to the bike using a piece
of rubber to reduce vibrations and zip ties to keep the device steady.
The sensor pack is mounted below the seat and in a sturdy place to
ensure safety of the device and for accurate sensor data readings.



Figure 6: Hall Effect Sensors

Figure 6 shows our two KY-003 Hall Effect sensors mounted with
zip ties near the rear wheel hub. The magnets attach to the spokes
of the wheel and the two hall effect sensors are used to detect
direction.

3.3.2 Software

Our mobile application was implemented using Android Studio and
it connects to our sensor pack device to receive sensor data from it
via BLE. Our app user interface is quite simple and has multiple
sections. The first is the Devices section and this is where you can
connect to one of the sensor pack devices via Bluetooth and the
LED on the sensor pack will turn on to confirm successful
Bluetooth connection. The Devices section of the app can be seen
in Figure 7.

12:58 @ + © CA[23%

Music Bike

Music Sensors

Selected: MusicBike_RTOS

MusicBike_RTOS
D8:3B:DA:77:7D:C9

Figure 7: Devices Section on App



12:57 & + O P4 H23%
Music Bike

Sensors Devices

Select Music Bank:

Demo

Forward_Classical_0.5

M83

Master

Mixed

Mixed_QuarterNoteChange
Mixed_Single_Background
Mixed_Single_Background_QuarterNoteChan..
Professional

Professional_30Deg_TrackSwitch

Auto .

Figure 8: Select Music Bank in Music Section on App

Another section on the app is the Music section and this is where
the rider can select which music/audio bank they want to listen to.
We used FMOD Studio to edit the music and create the various
music banks, each of which contain unique audio adjustments
based on parameters that correspond to different bike tricks. The
FMOD audio engine library is connected to the Android app, so it
can interact with the data sent from the sensor pack in real time.
Figure 8 shows where the rider can choose from different music
banks.

12:57 & s O WA4M22%
Music Bike

Sensors Devices

Select Music Bank:
Mixed

Auto All Parameters .

Wheel Speed: 0

@
Max Speed: 49.8 km/h

Auto .

Pitch: 0 Reverse

Max Pitch (Up): 179.8° Max Pitch (Down): -176.6

Event:

Auto .

Jumps:7 Drops:8 180s:0

Direction Source Control:

Figure 9: Parameters in Music Section on App

Figure 9 shows the parameters and events that happen in real time
when the rider is riding the bike. This allows the rider to see the
data being collected and sent from the microcontroller. The app
works to receive sensor data from the sensor pack via BLE, and
also connects with the FMOD audio engine to establish various
bike tricks as parameters in FMOD studio, and when one of these
parameters/tricks is detected, FMOD studio is configured to adjust
the music, depending on the music bank that is selected by the rider.




3.4 Distinctions
3.4.1 PCB

Initially, our hardware design prototype was a perf board based
setup with the parts soldered on. We developed a custom PCB to
replace this, so that the components are in a more compact, durable,
and professional design suitable for long term testing and potential
deployment. The schematic was made to integrate the ESP32
microcontroller, sensor connectors, power regulation, and
potentiometer inputs onto a single board. The PCB schematic and
layout can be seen below.

P :" D—:_ 7

Figure 2: PCB Schematic

Figure 3: PCB Layout

3.4.2 “Machine Learning”

Our first attempt to accurately detect jumps, hops, and wheelies
used a TensorFlow model running on our mobile app, trained using
a custom dataset. We ran into accuracy and latency problems with
this solution. Reducing the false positive rate of our model required
extending the input to 10 seconds, but this limited the user to
detecting a trick once every 10 seconds. Even with this
modification, we were unable to accurately detect 180s. We
attribute this to our dataset, which naively contained only time,
current pitch/yaw/roll, and g-force. It did not contain angular

velocity and similar raw metrics that define a movement like a 180.
This was a critical oversight, but by the time we realized our
mistake we didn’t have time to collect new data.

So, we pivoted to an algorithmic threshold classifier. The classifier
requires three separate criteria to be true to decide a 180 has
occurred: a g-force anomaly (classified as a g-force over 2.37g or
below 0.6g) within the last 1.5s, angular displacement must be over
90 degrees, and a “spin score” must be over 0.8. Both spin score
and angular displacement decay with time if angular velocity is
below a certain threshold. “Spin score” grows faster if the current
angular velocity is higher. It was included as a metric of detection
to increase the number of tunable parameters and reduce the
likelihood of false positives by biasing detection towards large,
high angular velocity movements.

With this algorithm, we were able to achieve detection accuracy
above 80% with fewer false positives than our machine learning
algorithm. Machine learning is still something we’d revisit in the
future if we had the time to train a more robust, larger dataset.

3.4.3 Live Demo

To highlight our confidence in our design’s reliability, we chose to
include a live demo of all app and bike functionality as one of our
distinctions. We demoed the Bluetooth, as well as adaptive music
capable of detecting forward, reverse, pitch, angle, jumps, and 180
detection, where we achieved near perfect accuracy.

4. DISCUSSION

4.1 Reflection

After thorough testing and using machine learning to train our
model to detect various bike tricks, such as a jump and a 180, we
found that our design works very well in detecting these tricks and
then sending a signal to the app, which sends a signal to FMOD to
adjust the music the rider hears.

Next steps could include further training our model with machine
learning and gathering more data to train and test to further improve
the accuracy of detecting tricks.

Currently our technology is primarily used to make it seem like the
cyclist is conducting an orchestra, by performing various bike tricks
to adjust the music. However, another application of our
technology could be simply detecting bike tricks. Our code can
accurately detect various tricks, such as a wheelie, jump, 180, and
riding backwards, so cyclists who like to perform tricks could use
the music as cue or acknowledgement that they performed the trick
correctly.

We learned a lot from this project, including learning how to use
new software, such as FMOD Studio and Android Studio.
Additionally, this project allowed us to learn more about embedded
systems in general and how we can seamlessly integrate the
hardware with the software.

If we were to do something differently, we would use machine
learning to train the data from the actual device (ESP32
microcontroller), instead of from the app. This could make the
machine learning training slightly more accurate because it would
be training the raw data from the input sensors on the



microcontroller, instead of from that data that is sent to the app via
Bluetooth.

4.2 Open Source

We have made our project open source so that any of us can be as
involved as we want in the future, and so that the project continues
to grow. Having an open-source environment would allow anyone
to make edits or suggestions to our GitHub repository. To officially
make our project open source, we obtained an MIT License for our
GitHub repository, which is a popular open-source license that
allows developers to use, copy, modify, merge, publish, and
distribute software, provided the original copyright and license text
are all included. Making our project open source will allows us and
others to contribute their ideas and hopefully further develop the
Music Bike.

4.3 Industry Standard

An industry standard that the Music Bike would be held to if it was
developed into a commercial product would be the IEEE 802.15.1
standard, which defines the specifications for Bluetooth
technology. This standard is relevant for the Music Bike, as the
project utilizes Bluetooth connectivity between the ESP32
microcontroller and the Android app. Bluetooth, based on IEEE
802.15.1, enables the secamless transfer of sensor data from the
bike’s IMU and hall effect sensors to the mobile app, allowing for
real time interaction and feedback during biking activities.

Key Aspects of IEEE 802.15.1 Relevant to the Music Bike:

1. Wireless Communication and Power Consumption:
Bluetooth devices that comply with IEEE 802.15.1 are
designed for short range communication and for the
Music Bike, the short-range nature of Bluetooth is ideal
for maintaining a stable connection between the
microcontroller and the app. This standard also specifies
low power operation, which is crucial for a battery-
operated system like the Music Bike. By being held to
this standard, the Music Bike can operate efficiently
without draining the battery too quickly, ensuring longer
usage periods.

2. Security Features:

The IEEE 802.15.1 standard incorporates security
protocols such as encryption, authentication, and
authorization, which are crucial for protecting data
transmitted between the bike and the mobile device. For
the Music Bike, these security measures could prevent
unauthorized access to user data, so complying with these
security features ensures that the Music Bike is a
trustworthy and secure user experience.

3. Data Transfer Rates and Latency:

The Music Bike requires real time data transmission for
activities like detecting bike tricks and triggering
corresponding changes in music. Compliance with the
data rate and latency specifications of IEEE 802.15.1
ensures that the Music Bike responds to user actions
without noticeable delays. This real time performance
would be critical for a seamless and immersive
interaction between the rider and the music.

By adhering to the IEEE 802.15.1 standard, the Music Bike can
ensure reliable, efficient, and secure Bluetooth communication
between the microcontroller and the app. This standardization is
important for maintaining device compatibility, minimizing
connection issues, and ensuring smooth performance, all of which
contribute to a positive user experience.

5. CONCLUSION

In this report, we have presented the development and
implementation of the Music Bike system, which transforms the
cycling experience by integrating real time adaptive music with the
rider’s actions. By leveraging sensors such as an IMU and Hall
Effect sensor, the system captures motion data, processes it on an
ESP32 microcontroller, and uses this data to adapt music playback
in real time using the FMOD audio engine. The integration of BLE
communication ensures low-latency interaction, creating an
immersive and responsive musical experience for the rider.

The primary goal of Music Bike was to create a system where the
rider feels like they are conducting the music through their
movements. The system achieves this by dynamically adjusting the
music based on sensor data. Through careful design and
optimization, we have succeeded in building a low-latency system
that responds intuitively to the rider’s physical actions, providing a
seamless connection between cycling and music.

Throughout the course of the project, we encountered and
addressed several challenges, including sensor data accuracy, and
achieving the desired level of music adaptation. Our solutions, such
as implementing sensor filtering algorithms and optimizing BLE
communication, helped mitigate these issues and ensured that the
system performed reliably during testing.

While the project has been successful in demonstrating the core
concept of Music Bike, there are several potential areas for future
improvement. For instance, we could explore more advanced
sensor types for greater accuracy or integrate more complex music
adaptation to provide an even richer listening experience.
Additionally, increasing the system’s power efficiency or
integrating additional environmental sensors could further enhance
the experience.

Overall, Music Bike represents an exciting step forward in
combining physical activity with adaptive audio, creating a unique
form of interactive entertainment. Future iterations of this project
could lead to applications in other areas, such as fitness training,
gaming, or even music therapy, where real time sensory input can
influence music in meaningful ways. The potential for innovation
in this field is vast, and we look forward to continuing to develop
and refine this technology.

6. REFERENCES
[17 Mercedes-AMG. "MERCEDES-AMG MBUX SOUND
DRIVE." https://www.mercedes-amg.com/en/mercedes-
amg-mbux-sound-drive (accessed June 4, 2025).
[2] B.R. Institute. "Sonic Bike." https://sonicbikes.net/sonic-
bike/ (accessed June 4, 2025).



https://www.mercedes-amg.com/en/mercedes-amg-mbux-sound-drive
https://www.mercedes-amg.com/en/mercedes-amg-mbux-sound-drive
https://sonicbikes.net/sonic-bike/
https://sonicbikes.net/sonic-bike/




	1. INTRODUCTION
	2. RELATED WORK
	2.1 Mercedes-AMG MBUX SOUND DRIVE
	2.2 Sonic Bike

	3. TECHINAL DETAILS
	3.1 Overview
	3.2 Theory of Operation
	3.3 Implementation Details
	3.3.1 Hardware
	3.3.2 Software

	3.4 Distinctions
	3.4.1 PCB
	3.4.2 “Machine Learning”
	3.4.3 Live Demo


	4. DISCUSSION
	4.1 Reflection
	4.2 Open Source
	4.3 Industry Standard

	5. CONCLUSION
	6. REFERENCES

