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ABSTRACT 

Music Bike is an innovative project that transforms the cycling 
experience by integrating real time adaptive music with a rider’s 
actions. Using sensors mounted on a bicycle, such as an IMU and 
Hall Effect sensor, the system collects data on speed, tilt, and G-
force, which is transmitted using Bluetooth Low Energy to an 
Android application. Additional threshold algorithms were used to 
detect different tricks, like a wheelie, jump, and 180. The core 
objective was to create an intuitive connection between cycling and 
music, allowing riders to feel as though they are conducting the 
music with their movements. The mobile application utilizes the 
FMOD audio engine to dynamically alter the music’s tempo, 
layers, and effects based on the sensor data, creating a unique 
listening experience for the rider. The system achieves a low-
latency feedback loop and seamless sensor integration, ensuring 
that the music adapts in real time without disrupting the cycling 
experience. By providing an immersive, adaptive soundtrack that 
responds to the rider’s physical motions, Music Bike reimagines 
cycling as a performance, turning each ride into a personal, musical 
journey.  

 

Keywords 

Adaptive audio, real-time music, Bluetooth Low Energy (BLE), 
sensor integration, ESP32, FMOD Studio, Android application, 
cycling, interactive music system, dynamic audio, embedded 
system. 

 

1. INTRODUCTION 
Music Bike is an innovative project that transforms the cycling 
experience by integrating real-time adaptive music with a rider’s 
actions and tricks on the bike. Using sensors, such as an IMU and 
Hall Effect sensor mounted on the bike, the system collects data 
related to speed, tilt, and G-force, which is transmitted to a mobile 
application via Bluetooth Low Energy (BLE). The mobile app uses 
this sensor data to adjust the rider’s music in real time, creating an 
interactive and dynamic experience for the rider. The Music Bike 
is designed to make the act of cycling feel like conducting an 
orchestra, where each motion influences the musical composition, 
enhancing the rider’s engagement with both the physical and 
auditory elements of the activity. 

 

Figure 1: The Music Bike 

 

Cycling is a popular recreational and fitness activity, but its 
experience is often static, with little variation beyond the rider’s 
surroundings. Music Bike addresses this by adding a layer of 
musical dynamism, transforming cycling into an immersive multi-
sensory experience. Drawing inspiration from similar systems like 
the Mercedes-AMG MBUX SOUND DRIVE, which adapts music 
to a driver’s behavior, and the Sonic Bike, which uses GPS to 
trigger music based on location, the Music Bike adapts the music 
based on the cyclist’s performance and movements. Such as 
performing tricks or changing riding intensity. This project aims to 
achieve a low-latency real time connection between sensor data and 
audio feedback, ensuring that the music feels seamlessly 
responsive.  

 

This report will describe the design and development of the Music 
Bike, detailing the hardware setup, sensor integration, mobile app 
functionality, adaptive audio logic using FMOD Studio, and 
performance metrics. It will also cover challenges faced during 
implementation and the solutions developed to ensure a smooth and 
engaging cycling experience. Finally, we will discuss the potential 



future applications of this technology and opportunities for 
expanding its capabilities, as well as possible industry standards our 
design would be held to if it was made into a commercial product. 

 

2. RELATED WORK 
 

2.1 Mercedes-AMG MBUX SOUND DRIVE 
We took some inspiration from Mercedes-AMG’s MBUX SOUND 
DRIVE which is a feature in some Mercedes-AMG vehicles that 
allows the music in the car to respond to one’s individual driving 
style. “MBUX SOUND DRIVE connects the vehicle’s hardware 
with the music software using precise in-car signals. The system 
uses sensors to interpret driving dynamics such as acceleration, 
steering, braking and recuperation and transforms them into 
musical expressions” [1]. This allows drivers to treat their vehicle 
as an instrument and compose music in real time. 

 

Our Music Bike takes inspiration from this project, as our goal was 
to make riding a bike feel like composing an orchestra. The most 
obvious difference between our Music Bike and the MBUX 
SOUND DRIVE is that ours is implemented on a bike, rather than 
a car. But this is an important distinction because the MBUX 
SOUND DRIVE uses more basic sensor inputs, such as 
acceleration and steering, while the Music Bike was programmed 
and trained to detect tricks, such as wheelies, jumps, and 180s on 
the bike. Another key difference is that the MBUX SOUND 
DRIVE adapts the driver’s own music, while the Music Bike has 
preset tracks that respond to various sensor inputs. 

 

2.2 Sonic Bike 
Another similar product to ours is the Sonic Bike, “which was 
invented by Kaffe Matthews and has evolved over 16 years of 
international projects, and continues to be researched and 
developed to expand the compositional potentials and unique 
listening experiences it creates” [2]. The Sonic Bike plays sound 
and music that changes depending on where the cyclist goes and 
how fast they ride. It is a bicycle with speakers on the front and a 
GPS tracking audio system on the back. The Sonic Bike performs 
from a Raspberry Pi3 with a GPS receiver attached. The system is 
powered by a USB charged power pack and everything is stored in 
a box secured on the back of the bike frame. The Sonic Bike uses 
two types of software, the mapping software which enables the 
drawing of zones of sound on streets, paths, parks, anywhere 
creating a sound map score. The other software is the system 
software which runs on he Raspberry Pi2 and enables the bike to 
locate itself on this sound map and it triggers specific music 
fragments to play in certain ways at particular locations. 

 

Our Music Bike is similar to the Sonic Bike as they both transform 
cycling into a dynamic musical experience. The key difference is 

that the Music Bike uses various sensors, such as an IMU and hall 
effect sensors to detect tricks on the bike and then have the music 
respond to those sensor inputs. On the other hand, the Sonic Bike 
uses a GPS system to adapt the music based on where the cyclist is 
on a certain sound map. Additionally, the Sonic Bike’s kit with the 
microcontroller and GPS is placed in a box behind the seat, while 
our implementation is placed on the shaft below the seat. This 
difference makes sense, as our implementation needs to be placed 
here to more accurately detect the tricks that the cyclist performs.  

 

3. TECHINAL DETAILS 
 

3.1 Overview 
The Music Bike system transforms cycling into an interactive, 
dynamic musical experience by integrating real time sensor data 
with adaptive audio. The system is composed of the hardware, a 
mobile application, and an audio engine that all work together to 
create a seamless experience. 

The device is composed of a custom PCB board with connections 
to integrate a microcontroller, an IMU, and Hall Effect sensors. The 
sensors collect data and send it to our app via BLE. The data is 
interpreted and if a bike trick, such as a wheelie, jump, or 180, is 
detected, then the FMOD audio engine, which contains multiple 
audio banks that the rider can choose from and each bank varies in 
how it adjusts the music using a set parameter and the rider can hear 
this change in music in real time.  

 

3.2 Theory of Operation 
The architecture consists of three main components: the hardware, 
the mobile application, and the FMOD audio engine.  

Hardware: The hardware consists of an ESP32-S3 
microcontroller, which is responsible for reading sensor data from 
multiple sources, such as an MPU9250 IMU and a KY-003 Hall 
Effect sensor. The sensor data is transmitted to the mobile app via 
BLE. The ESP32-S3 is also powered by a lithium battery. 

Mobile Application: The mobile app, developed for Android, 
connects to the hardware via BLE, receives sensor data, and 
processes it for music playback. The app communicates with the 
FMOD Studio engine to adapt the music based on sensor inputs. 
The user interface allows the rider to pick their track based on 
different FMOD Studio banks and view the sensor data. 

FMOD Audio Engine: FMOD Studio is used for the adaptive 
audio system, which responds to changes in the sensor data. FMOD 
processes the incoming data to modify various aspects of the music, 
such as pitch, layering of instruments, and changing the song based 
on the rider’s performance. 

 

3.3 Implementation Details 

3.3.1 Hardware 
Most of our hardware is implemented in a small, compact sensor 
pack that is mounted just below the bicycle seat. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission. 
 
CSE 475 – Final Report 

 



 

Figure 2: Front of Sensor Pack 

Figure 2 shows the top of our sensor pack and it contains the 
display, accelerometer zero button, power switch, MPU9250 IMU, 
LED for confirming Bluetooth connection, and potentiometers for 
adjusting the jump/drop sensitivity.  

 

 

Figure 3: Side of Sensor Pack 

Figure 3 shows the side of our sensor pack, which contains the 
power delivery board used to regulate the voltage of our attached 
lithium-ion battery. 

 

 

Figure 4: Back of Sensor Pack 

Figure 4 shows the back of our sensor pack, which contains our 
ESP32-S3 microcontroller. When mounted on the bike, the back 
is covered by a piece of foam and the lithium-ion battery is placed 
in the void between the microcontroller and the PCB. 

 

 

Figure 5: Sensor Pack Mounted on Bike 

Figure 5 shows the sensor pack mounted to the bike using a piece 
of rubber to reduce vibrations and zip ties to keep the device steady. 
The sensor pack is mounted below the seat and in a sturdy place to 
ensure safety of the device and for accurate sensor data readings. 



 

 

Figure 6: Hall Effect Sensors 

Figure 6 shows our two KY-003 Hall Effect sensors mounted with 
zip ties near the rear wheel hub. The magnets attach to the spokes 
of the wheel and the two hall effect sensors are used to detect 
direction. 

 

3.3.2 Software 
Our mobile application was implemented using Android Studio and 
it connects to our sensor pack device to receive sensor data from it 
via BLE. Our app user interface is quite simple and has multiple 
sections. The first is the Devices section and this is where you can 
connect to one of the sensor pack devices via Bluetooth and the 
LED on the sensor pack will turn on to confirm successful 
Bluetooth connection. The Devices section of the app can be seen 
in Figure 7.  

 
Figure 7: Devices Section on App 

 



 
Figure 8: Select Music Bank in Music Section on App 

 
Another section on the app is the Music section and this is where 
the rider can select which music/audio bank they want to listen to. 
We used FMOD Studio to edit the music and create the various 
music banks, each of which contain unique audio adjustments 
based on parameters that correspond to different bike tricks. The 
FMOD audio engine library is connected to the Android app, so it 
can interact with the data sent from the sensor pack in real time. 
Figure 8 shows where the rider can choose from different music 
banks. 

 
Figure 9: Parameters in Music Section on App 

 
Figure 9 shows the parameters and events that happen in real time 
when the rider is riding the bike. This allows the rider to see the 
data being collected and sent from the microcontroller. The app 
works to receive sensor data from the sensor pack via BLE, and 
also connects with the FMOD audio engine to establish various 
bike tricks as parameters in FMOD studio, and when one of these 
parameters/tricks is detected, FMOD studio is configured to adjust 
the music, depending on the music bank that is selected by the rider. 



3.4 Distinctions 

3.4.1 PCB 
Initially, our hardware design prototype was a perf board based 
setup with the parts soldered on. We developed a custom PCB to 
replace this, so that the components are in a more compact, durable, 
and professional design suitable for long term testing and potential 
deployment. The schematic was made to integrate the ESP32 
microcontroller, sensor connectors, power regulation, and 
potentiometer inputs onto a single board. The PCB schematic and 
layout can be seen below. 

 

 

Figure 2: PCB Schematic 

 

 

Figure 3: PCB Layout 

 

3.4.2 “Machine Learning” 
Our first attempt to accurately detect jumps, hops, and wheelies 

used a TensorFlow model running on our mobile app, trained using 

a custom dataset. We ran into accuracy and latency problems with 

this solution. Reducing the false positive rate of our model required 

extending the input to 10 seconds, but this limited the user to 

detecting a trick once every 10 seconds. Even with this 

modification, we were unable to accurately detect 180s. We 

attribute this to our dataset, which naively contained only time, 

current pitch/yaw/roll, and g-force. It did not contain angular 

velocity and similar raw metrics that define a movement like a 180. 

This was a critical oversight, but by the time we realized our 

mistake we didn’t have time to collect new data. 

So, we pivoted to an algorithmic threshold classifier. The classifier 

requires three separate criteria to be true to decide a 180 has 

occurred: a g-force anomaly (classified as a g-force over 2.37g or 

below 0.6g) within the last 1.5s, angular displacement must be over 

90 degrees, and a “spin score” must be over 0.8. Both spin score 

and angular displacement decay with time if angular velocity is 

below a certain threshold. “Spin score” grows faster if the current 

angular velocity is higher. It was included as a metric of detection 

to increase the number of tunable parameters and reduce the 

likelihood of false positives by biasing detection towards large, 

high angular velocity movements.  

With this algorithm, we were able to achieve detection accuracy 

above 80% with fewer false positives than our machine learning 

algorithm. Machine learning is still something we’d revisit in the 

future if we had the time to train a more robust, larger dataset. 

3.4.3 Live Demo 
To highlight our confidence in our design’s reliability, we chose to 
include a live demo of all app and bike functionality as one of our 
distinctions. We demoed the Bluetooth, as well as adaptive music 
capable of detecting forward, reverse, pitch, angle, jumps, and 180 
detection, where we achieved near perfect accuracy. 

 
 

4. DISCUSSION 
 

4.1 Reflection 
After thorough testing and using machine learning to train our 
model to detect various bike tricks, such as a jump and a 180, we 
found that our design works very well in detecting these tricks and 
then sending a signal to the app, which sends a signal to FMOD to 
adjust the music the rider hears.  

Next steps could include further training our model with machine 
learning and gathering more data to train and test to further improve 
the accuracy of detecting tricks. 

Currently our technology is primarily used to make it seem like the 
cyclist is conducting an orchestra, by performing various bike tricks 
to adjust the music. However, another application of our 
technology could be simply detecting bike tricks. Our code can 
accurately detect various tricks, such as a wheelie, jump, 180, and 
riding backwards, so cyclists who like to perform tricks could use 
the music as cue or acknowledgement that they performed the trick 
correctly. 

We learned a lot from this project, including learning how to use 
new software, such as FMOD Studio and Android Studio. 
Additionally, this project allowed us to learn more about embedded 
systems in general and how we can seamlessly integrate the 
hardware with the software. 

If we were to do something differently, we would use machine 
learning to train the data from the actual device (ESP32 
microcontroller), instead of from the app. This could make the 
machine learning training slightly more accurate because it would 
be training the raw data from the input sensors on the 



microcontroller, instead of from that data that is sent to the app via 
Bluetooth. 

4.2 Open Source 
We have made our project open source so that any of us can be as 
involved as we want in the future, and so that the project continues 
to grow. Having an open-source environment would allow anyone 
to make edits or suggestions to our GitHub repository. To officially 
make our project open source, we obtained an MIT License for our 
GitHub repository, which is a popular open-source license that 
allows developers to use, copy, modify, merge, publish, and 
distribute software, provided the original copyright and license text 
are all included. Making our project open source will allows us and 
others to contribute their ideas and hopefully further develop the 
Music Bike. 

4.3 Industry Standard 
An industry standard that the Music Bike would be held to if it was 
developed into a commercial product would be the IEEE 802.15.1 
standard, which defines the specifications for Bluetooth 
technology. This standard is relevant for the Music Bike, as the 
project utilizes Bluetooth connectivity between the ESP32 
microcontroller and the Android app. Bluetooth, based on IEEE 
802.15.1, enables the seamless transfer of sensor data from the 
bike’s IMU and hall effect sensors to the mobile app, allowing for 
real time interaction and feedback during biking activities.  

 

Key Aspects of IEEE 802.15.1 Relevant to the Music Bike: 

 

1. Wireless Communication and Power Consumption: 
Bluetooth devices that comply with IEEE 802.15.1 are 
designed for short range communication and for the 
Music Bike, the short-range nature of Bluetooth is ideal 
for maintaining a stable connection between the 
microcontroller and the app. This standard also specifies 
low power operation, which is crucial for a battery-
operated system like the Music Bike. By being held to 
this standard, the Music Bike can operate efficiently 
without draining the battery too quickly, ensuring longer 
usage periods. 
 

2. Security Features: 
The IEEE 802.15.1 standard incorporates security 
protocols such as encryption, authentication, and 
authorization, which are crucial for protecting data 
transmitted between the bike and the mobile device. For 
the Music Bike, these security measures could prevent 
unauthorized access to user data, so complying with these 
security features ensures that the Music Bike is a 
trustworthy and secure user experience. 
 

3. Data Transfer Rates and Latency: 
The Music Bike requires real time data transmission for 
activities like detecting bike tricks and triggering 
corresponding changes in music. Compliance with the 
data rate and latency specifications of IEEE 802.15.1 
ensures that the Music Bike responds to user actions 
without noticeable delays. This real time performance 
would be critical for a seamless and immersive 
interaction between the rider and the music. 
 

By adhering to the IEEE 802.15.1 standard, the Music Bike can 
ensure reliable, efficient, and secure Bluetooth communication 
between the microcontroller and the app. This standardization is 
important for maintaining device compatibility, minimizing 
connection issues, and ensuring smooth performance, all of which 
contribute to a positive user experience.  

 

5. CONCLUSION 
In this report, we have presented the development and 
implementation of the Music Bike system, which transforms the 
cycling experience by integrating real time adaptive music with the 
rider’s actions. By leveraging sensors such as an IMU and Hall 
Effect sensor, the system captures motion data, processes it on an 
ESP32 microcontroller, and uses this data to adapt music playback 
in real time using the FMOD audio engine. The integration of BLE 
communication ensures low-latency interaction, creating an 
immersive and responsive musical experience for the rider. 

The primary goal of Music Bike was to create a system where the 
rider feels like they are conducting the music through their 
movements. The system achieves this by dynamically adjusting the 
music based on sensor data. Through careful design and 
optimization, we have succeeded in building a low-latency system 
that responds intuitively to the rider’s physical actions, providing a 
seamless connection between cycling and music. 

Throughout the course of the project, we encountered and 
addressed several challenges, including sensor data accuracy, and 
achieving the desired level of music adaptation. Our solutions, such 
as implementing sensor filtering algorithms and optimizing BLE 
communication, helped mitigate these issues and ensured that the 
system performed reliably during testing. 

While the project has been successful in demonstrating the core 
concept of Music Bike, there are several potential areas for future 
improvement. For instance, we could explore more advanced 
sensor types for greater accuracy or integrate more complex music 
adaptation to provide an even richer listening experience. 
Additionally, increasing the system’s power efficiency or 
integrating additional environmental sensors could further enhance 
the experience. 

Overall, Music Bike represents an exciting step forward in 
combining physical activity with adaptive audio, creating a unique 
form of interactive entertainment. Future iterations of this project 
could lead to applications in other areas, such as fitness training, 
gaming, or even music therapy, where real time sensory input can 
influence music in meaningful ways. The potential for innovation 
in this field is vast, and we look forward to continuing to develop 
and refine this technology. 
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